5 References

Following papers are important for understanding our project

  1. Berer K et al. Selective accumulation of pro-inflammatory T cells in the intestine contributes to the resistance to autoimmune demyelinating disease. PLoS One. 2014;9(2):e87876. doi:10.1371/journal.pone.0087876
  2. Busbee PB et al. Indole-3-carbinol prevents colitis and associated microbial dysbiosis in an IL-22-dependent manner. JCI Insight. 2020;5(1):e127551. doi:10.1172/jci.insight.127551
  3. Castillo-Álvarez F et al. The influence of interferon β-1b on gut microbiota composition in patients with multiple sclerosis. Neurologia. 2018;S0213-4853(18)30158-0. doi:10.1016/j.nrl.2018.04.006
  4. Chitrala KN et al. CD44 deletion leading to attenuation of experimental autoimmune encephalomyelitis results from alterations in gut microbiome in mice. Eur J Immunol. 2017;47(7):1188-1199. doi:10.1002/eji.201646792
  5. Chun E et al. Metabolite-Sensing Receptor Ffar2 Regulates Colonic Group 3 Innate Lymphoid Cells and Gut Immunity. Immunity. 2019;51(5):871-884.e6. doi:10.1016/j.immuni.2019.09.014
  6. Cvjetićanin T et al. Dried leaf extract of Olea europaea ameliorates islet-directed autoimmunity in mice. Br J Nutr. 2010;103(10):1413-1424. doi:10.1017/S0007114509993394
  7. de Groot PF et al. Distinct fecal and oral microbiota composition in human type 1 diabetes, an observational study. PLoS One. 2017;12(12):e0188475. doi:10.1371/journal.pone.0188475
  8. Di Luccia B et al. ILC3 integrate glycolysis and mitochondrial production of reactive oxygen species to fulfill activation demands. J Exp Med. 2019;216(10):2231-2241. doi:10.1084/jem.20180549
  9. Eken A et al. Fingolimod Alters Tissue Distribution and Cytokine Production of Human and Murine Innate Lymphoid Cells. Front Immunol. 2019;10:217. doi:10.3389/fimmu.2019.00217
  10. Ercolano G et al. Distinct and shared gene expression for human innate versus adaptive helper lymphoid cells. J Leukoc Biol. 2020; doi:10.1002/JLB.5MA0120-209R
  11. Esplugues E et al. Control of TH17 cells occurs in the small intestine. Nature. 2011;475(7357):514-518. doi:10.1038/nature10228
  12. Farkas AM et al. Induction of Th17 cells by segmented filamentous bacteria in the murine intestine. J Immunol Methods. 2015;421:104-111. doi:10.1016/j.jim.2015.03.020
  13. Hauser SL, Cree BAC. Treatment of Multiple Sclerosis: A Review. Am J Med. 2020;S0002-9343(20)30602-1. doi:10.1016/j.amjmed.2020.05.049
  14. Haghikia A et al. Dietary Fatty Acids Directly Impact Central Nervous System Autoimmunity via the Small Intestine. Immunity. 2016 Apr 19;44(4):951-3. doi:10.1016/j.immuni.2016.04.006
  15. Hepworth MR et al. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature. 2013;498(7452):113-117. doi:10.1038/nature12240
  16. Ho J et al. Effect of Prebiotic on Microbiota, Intestinal Permeability, and Glycemic Control in Children With Type 1 Diabetes. J Clin Endocrinol Metab. 2019 Oct 1;104(10):4427-4440. doi: 10.1210/jc.2019-00481
  17. Huang J et al. Gut microbial metabolites alter IgA immunity in type 1 diabetes. JCI Insight. 2020;5(10):e135718. doi:10.1172/jci.insight.135718
  18. Ivanov et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe. 2008;4(4):337-349. doi:10.1016/j.chom.2008.09.009
  19. Jia L et al. Butyrate Ameliorates Antibiotic-Driven Type 1 Diabetes in the Female Offspring of Nonobese Diabetic Mice. J Agric Food Chem. 2020;68(10):3112-3120. doi: 10.1021/acs.jafc.9b07701
  20. Katz Sand I et al. Disease-modifying therapies alter gut microbial composition in MS. Neurol Neuroimmunol Neuroinflamm. 2018;6(1):e517. doi:10.1212/NXI.0000000000000517
  21. Khan S, Jena GB. Protective role of sodium butyrate, a HDAC inhibitor on beta-cell proliferation, function and glucose homeostasis through modulation of p38/ERK MAPK and apoptotic pathways: study in juvenile
    diabetic rat. Chem Biol Interact. 2014;213:1-12. doi:10.1016/j.cbi.2014.02.001
  22. Klose CSN, Artis D. Innate lymphoid cells control signaling circuits to regulate tissue-specific immunity. Cell Res. 2020;30(6):475-491. doi:10.1038/s41422-020-0323-8
  23. Koprivica I et al. Ethyl Pyruvate Stimulates Regulatory T Cells and Ameliorates Type 1 Diabetes Development in Mice. Front Immunol. 2019;9:3130. doi:10.3389/fimmu.2018.03130
  24. Kunkl M et al. T Helper Cells: The Modulators of Inflammation in Multiple Sclerosis. Cells. 2020;9(2):482.doi:10.3390/cells9020482
  25. Lee YK et al. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl AcadSci U S A. 2011;108 Suppl 1:4615-4622. doi:10.1073/pnas.1000082107
  26. Marino E et al. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat Immunol. 2017;18(5):552-562. doi:10.1038/ni.3713
  27. Miljković D et al. A comparative analysis of multiple sclerosis-relevant anti-inflammatory properties of ethyl pyruvate and dimethyl fumarate. J Immunol. 2015;194(6):2493-2503. doi:10.4049/jimmunol.1402302
  28. Miyauchi E et al. Gut microorganisms act together to exacerbate inflammation in spinal cords. Nature. 2020;585(7823):102-106. doi: 10.1038/s41586-020-2634-9
  29. Mizuno M et al. The dual role of short fatty acid chains in the pathogenesis of autoimmune disease models. PLoS One. 2017;12(2):e0173032. doi: 10.1371/journal.pone.0173032
  30. Momčilović et al. Tenascin-C deficiency protects mice from experimental autoimmune encephalomyelitis. J Neuroimmunol. 2017;302:1-6. doi:10.1016/j.jneuroim.2016.12.001
  31. Mortha A et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science. 2014;343(6178):1249288. doi:10.1126/science.1249288
  32. Nikolic I et al. Standardized bovine colostrum derivative impedes development of type 1 diabetes in rodents. Immunobiology. 2017;222(2):272-279. doi:10.1016/j.imbio.2016.09.013
  33. Ochoa-Repáraz J et al. Induction of gut regulatory CD39+ T cells by teriflunomide protects against EAE. NeurolNeuroimmunolNeuroinflamm. 2016;3(6):e291. doi:10.1212/NXI.0000000000000291
  34. Omenetti S, Pizarro TT. The Treg/Th17 Axis: A Dynamic Balance Regulated by the Gut Microbiome. Front Immunol. 2015;6:639. doi:10.3389/fimmu.2015.00639
  35. Planas R et al. GDP-l-fucose synthase is a CD4+ T cell-specific autoantigen in DRB3*02:02 patients with multiple sclerosis. SciTransl Med. 2018;10(462):eaat4301. doi:10.1126/scitranslmed.aat4301
  36. Primavera M. Prediction and Prevention of Type 1 Diabetes. Front Endocrinol (Lausanne). 2020;11:248. doi:10.3389/fendo.2020.00248
  37. Qi H et al. Lactobacillus maintains healthy gut mucosa by producing L-Ornithine. Commun Biol. 2019;2:171. doi:10.1038/s42003-019-0424-4
  38. Saksida T et al. Apotransferrin inhibits interleukin-2 expression and protects mice from experimental autoimmune encephalomyelitis. J Neuroimmunol. 2013;262(1-2):72-78. doi:10.1016/j.jneuroim.2013.07.001
  39. Sepahi A et al. Dietary fiber metabolites regulate innate lymphoid cell responses. Mucosal Immunol. 2020; doi:10.1038/s41385-020-0312-8
  40. Sorini C et al. Loss of gut barrier integrity triggers activation of islet-reactive T cells and autoimmune diabetes. Proc Natl AcadSci U S A. 2019;116(30):15140-15149. doi:10.1073/pnas.1814558116
  41. Sospedra M, Martin R. Immunology of Multiple Sclerosis. Semin Neurol. 2016;36(2):115-127. doi:10.1055/s-0036-1579739
  42. Stanisavljević S et al. Oral neonatal antibiotic treatment perturbs gut microbiota and aggravates central nervous system autoimmunity in Dark Agouti rats. Sci Rep. 2019;9:918. doi:10.1038/s41598-018-37505-7
  43. Stanisavljević S et al. Strain-specific helper T cell profile in the gut-associated lymphoid tissue. Immunol Lett. 2017;190:282-288. doi:10.1016/j.imlet.2017.08.017
  44. Stewart L et al. Antigenic mimicry of ubiquitin by the gut bacterium Bacteroides fragilis: a potential link with autoimmune disease. Clin Exp Immunol. 2018;194(2):153-165. doi:10.1111/cei.13195
  45. Tan JK et al. Metabolite-Sensing G Protein-Coupled Receptors-Facilitators of Diet-Related Immune Regulation. Annu Rev Immunol. 2017 35:371-402. doi:10.1146/annurev-immunol-051116-052235
  46. Walker LS, von Herrath M. CD4 T cell differentiation in type 1 diabetes. Clin Exp Immunol. 2016;183(1):16-29. doi:10.1111/cei.12672
  47. Wekerle H. Nature, nurture, and microbes: The development of multiple sclerosis. Acta Neurol Scand. 2017;136 Suppl 201:22-25. doi:10.1111/ane.12843
  48. Yu H et al. Harnessing the power of regulatory T-cells to control autoimmune diabetes: overview and perspective. Immunology. 2018;153(2):161-170. doi:10.1111/imm.12867
  49. Zeng Q et al. Gut dysbiosis and lack of short chain fatty acids in a Chinese cohort of patients with multiple sclerosis. Neurochem Int. 2019;129:104468. doi:10.1016/j.neuint.2019.104468
  50. Zhou L et al. Innate lymphoid cells support regulatory T cells in the intestine through interleukin-2. Nature. 2019;568(7752):405-409. doi:10.1038/s41586-019-1082-x